
Merging Ultra-low Duty Cycle Networks
Matthew Dobson(m.c.dobson@vu.nl), Spyros Voulgaris(spyros@cs.vu.nl), Maarten van Steen(steen@cs.vu.nl)

Department of Computer Science, Vrije Universiteit, Amsterdam, Netherlands

Abstract—Energy is the scarcest resource in ad-hoc wireless
networks, particularly in wireless sensor networks requiring a
long lifetime. Intermittently switching the radio on and off is
widely adopted as the most effective way to keep energy consump-
tion low. This, however, prevents the very goal of communication,
unless nodes switch their radios on at synchronized intervals, a
rather nontrivial coordination task.

In this paper we address the problem of synchronizing
node radios to a single universal schedule in very large scale
wireless ad-hoc networks. More specifically, we focus on how
independently synchronized clusters of nodes can detect each
other and merge to a common radio schedule. Our main
contributions consist in identifying the fundamental subproblems
that govern cluster merging, providing a detailed comparison of
the respective policies and their combinations, and supporting
them by extensive simulation. Energy consumption, convergence
speed, and network scalability have been the driving factors
in our evaluation. The proposed policies are extensively tested
in networks of up to 4,096 nodes. Our work is based on the
GMAC protocol, a gossip-based MAC protocol for wireless ad-
hoc networks.

I. INTRODUCTION

Recent advances in electronics and embedded systems have
made wireless devices become smaller, lighter, less intrusive,
and significantly cheaper: a commodity. This enables the
deployment of increasingly larger collections of such devices
for a multitude of applications, mainly for the collection of
observed data (sensor networks). There is no indication of a
slow down in this trend. Quite on the contrary, we anticipate
wireless sensor networks consisting of tens of thousands of
nodes to be common in the near future.

Of major concern to wireless networks is their lifetime dura-
tion, and energy is the main factor determining it. Decreasing
the energy footprint of a wireless device boosts its lifetime in
a reversely proportional way. It comes as no surprise that most
research aiming at prolonging the lifetime of wireless networks
focuses on limiting the radio operation of their devices. Indeed,
the radio circuit of some sensor devices are measured to
consume three orders of magnitude more power than the rest
of the hardware (CPU, memory, etc.), either when the radio
is in transmitting or receiving mode.

The main way to limit the operation of the radio is to limit
the time for which the radio circuitry is switched on. This
implies intermittently switching the radio on and off. The
periods during which a node’s radio is on or off are known as
its active period and inactive period, respectively. The fraction
of the time that a node’s radio is on, is known as the duty cycle.
That is,

duty cycle =
Tactive

Tactive + Tinactive
=

Tactive

T

For example, a node that is active for 100ms every second
has a duty cycle of 100ms

1000ms = 10%.
Lifetime predictability is an equally important property of

a wireless network for certain applications. Prolonging the
network’s life in a best effort manner is not enough for some
applications that additionally require a reasonable estimation
of the network’s lifetime. To guarantee lifetime predictabil-
ity, the use of energy should be constant and independent
of operation-specific conditions, such as coincidentally high
traffic or unexpected topology changes.

The requirements of long and predictable lifetime duration
have led to the GMAC1 family of protocols. In GMAC,
nodes use a very small duty cycle (in the order of 1%), and
broadcast messages at fixed intervals, following a gossip-based
communication model.

It is clear that to enable communication between two or
more nodes, their active periods should be—at least partially—
overlapping. In fact, to fully utilize the energy nodes spend on
their radio circuits, their active periods should be synchronized
as accurately as possible, to maximize the shared communi-
cation window. Synchronization of active periods in ad-hoc
wireless networks is a nontrivial problem, notably due to the
lack of a central coordinator and the inherently restrained
nature of such devices. When confronted with the additional
requirement of fixed-rate use of energy, it becomes a far
more challenging problem, as solutions that asymmetrically
put more burden either on the sender or the receiver, are ruled
out.

Maintaining the active periods of nodes in an ad-hoc net-
work synchronized to a single schedule is decomposed in two
orthogonal subproblems:

• First, clusters of nodes synchronized independently to
non-overlapping schedules, should detect the existence
of each other and merge to a single, universal schedule.

• Second, once a set of nodes is synchronized to a common
schedule, corrective actions should be continuously taken
to alleviate the tendency of nodes to drift apart due to
different clock drifts.

We have dealt with the latter subproblem in [1], which turns
out to be addressed by an extensive number of researchers,
at various different forms and scenarios, as discussed in
Section II.

In this paper we address the former subproblem. In particu-
lar, we are interested in sets potentially consisting of thousands
of nodes. Despite its key importance in forming large ad-hoc

1GMAC is protected by US Patent Application 12/215,040. GMAC is
available free of charge for academic use.

networks with a single synchronized schedule, this problem
has not been addressed extensively by the research community.

Although our solution is presented in the context of GMAC,
the methodologies, principles, and algorithms we propose can
be generalized to virtually any MAC protocol with a very low
duty cycle.

II. RELATED WORK

There are two MAC-level protocols that are particularly
relevant for our discussion. S-MAC [2], one of the main
representatives of slotted access protocols, divides time in
fixed-length slots of 1-3s and uses a 300ms active period,
during which nodes compete for the channel using carrier-
sensing to avoid collisions. T-MAC [3] improves upon S-MAC
by adding adaptivity to traffic. Active nodes time out if they
hear no traffic for 15ms, drastically reducing energy use in
idle networks.

In both S-MAC and T-MAC, when a new node joins it
listens for at least the duration of a whole slot to detect
the presence of other nodes. If other nodes are present, it
follows their schedule. Otherwise it picks an arbitrary schedule
of its own. When multiple schedules are detected, a node
follows them all, acting as a bridge between independently
synchronized clusters. This, however, imposes on bridge nodes
an energy cost that is a multiple of the cost for nodes following
a single schedule, which is against our goal of fixed energy
consumption and predictable lifetime.

Most importantly, both protocols ignore the fact that in the
course of time, notably in large networks where maintaining
synchronization across a long diameter is nontrivial, such a
policy will eventually lead to the coexistence of a number
of diverse schedules, multiplying the amount of energy used,
while at the same time hindering the operation of broadcast-
based communication protocols. Although this issue does not
arise in small-diameter and short-lived networks, in networks
of the size, longevity, and mobility we target at it constitutes
a major shortcoming.

SCP-MAC [4] is a further optimization of the aforemen-
tioned protocols, lowering duty-cycles to as low as 0.3%
by allowing channel polling at very short, scheduled inter-
vals. Although SCP-MAC is significantly more sensitive to
a tight synchronization than S-MAC and T-MAC, the issue
of merging independently synchronized “virtual clusters” to
a common schedule is completely overlooked in SCP-MAC,
implicitly assuming a set of nodes that is and remains tightly
synchronized.

In [5], Liu et al. describe a method for merging clusters in
multi-hop 802.11 ad-hoc networks, in contrast to the standard
solution of bridging the clusters. Their method is based exclu-
sively on the passive listening method (extensively described
in Section IV). There are no details on the merge process itself,
presumably nodes simply ’jump’ to their new schedule during
the merge.

Mank et al. present Mobile LMAC in [6] and [7], removing
assumptions about static topologies and using gateway nodes
to bootstrap synchronization. The proposed merge protocol

Fig. 1: Graphical depiction of the physically connected but
separately synchronized clusters of nodes

comes close to ours with respect to the part making a decision
on which cluster to prevail. However, their evaluation is limited
to networks of up to nine sensors, which is too limited to draw
any conclusion with respect to scalability. Additionally, the
Mobile LMAC protocol focuses on enabling nodes to achieve
a high throughput channel even in the case of high network
load, contrary to GMAC which is designed for constant-rate
gossiping between nodes.

In [8], Cidon and Sidi propose an algorithm that allows
a multihop network of N nodes to dynamically agree on a
conflict-free TDMA schedule. However, it requires O(N) slots
per frame, which renders it inappropriate for the scenarios we
are targeting.

In [9], Arumugam and Kulkarni present an algorithm that
deterministically establishes a TDMA schedule by a gateway
node circulating a token. However, no attention is paid to
joining clusters and keeping them synchronized, as nodes are
assumed to be de facto synchronized.

The same authors propose SS-TDMA [10], a self-stabilizing
MAC protocol for sensor networks. It assigns slots determin-
istically based on (known) locations in a grid topology and is
bootstrapped from a gateway node that also acts as a sink. The
protocol is tailored to TDMA schedules for gossiping, however
no duty-cycling or other energy-awareness is discussed.

The issue of clock synchronization in the face of clock drifts
is addressed by Tjoa et al. in SMART [11]. Although this
paper is an inspiration for the clock synchronization algorithm
adopted in GMAC, it does not deal with the orthogonal
problem of joining clusters with non-overlapping schedules,
neither does it consider duty cycling.

Finally, Pussente and Barbosa address the clock synchro-
nization problem too in [12]. Like the previous paper, this
paper focuses on clock synchronization alone, not dealing with
duty cycling or merging of different clusters.

Concluding, although a multitude of MAC layer protocols
have been designed for a plethora of different target scenarios,
to the best of our knowledge no work exists that exhaustively
addresses the issue of dynamically merging clusters indepen-
dently synchronized to non-overlapping schedules.

III. DECENTRALIZED CLUSTER MERGING

The duty cycle-based operation of the nodes makes the
synchronization of the active periods of their frames essential.
Nodes whose active periods do not overlap cannot com-
municate with each other, effectively partitioning the whole
network into separate sub-networks (see Figure 1). In this
paper, we focus on one aspect of that synchronization, namely
the merging of these separate sub-networks, or clusters, into
a single connected network, with all nodes sharing the same
active period.2 When all clusters have been merged together,
we say that the nodes have converged to a single cluster. The
problem of convegence can be broken-down into three sub-
problems: detection, decision and notification.

A. Detection

Before the clusters can be merged, they must first become
aware of each other. We distinguish two methods of detection:
passive, where nodes listen during the inactive portion of
their duty cycle to detect messages from other nodes, and
active, where nodes broadcast a join message during the
inactive portion of their duty cycle allowing other nodes using
a different active period to detect and join the sending node’s
cluster.

Passive detection offers a trade-off of increased energy
consumption for faster detection. For example, a node could
detect any other node in its range if it listened to the entire
inactive portion of its frame. However, this obviously defeats
the purpose of duty cycling, and would rapidly deplete the
node’s battery. We could apply the duty cycle method and
instruct nodes to listen to some percentage, pl, of the inactive
period3, reducing energy consumption but also effectiveness.

The effectiveness of active detection can be affected by
energy spent (i.e., sending more messages), but is mainly
determined by the duty cycle of the network, τ . This is
because the probability pd of a detection event, that is, the
probability that a message transmitted during one cluster’s
inactive period will be received during another cluster’s active
period (ignoring collisions), is equal to:

pd =
Tactive

Tinactive

Based on the definition of the duty cycle, τ , we have:

τ =
Tactive

Tactive + Tinactive
⇒

Tinactive =
(1− τ)× Tactive

τ

By substituting back in the formula for the detection proba-
bility we get:

pd =
τ

1− τ

2As we showed in [1], GMAC’s median algorithm is capable of maintaining
tight synchronization within clusters.

3This can be implemented as listening for an additional pl × Tinactive

seconds every frame or by listening to the entire frame (an additional
Tinactive seconds) with probability pl. We chose to implement the latter
method.

Fig. 2: Graphical representation of the cycle problem in
GMAC’s decision mechanism

If Tactive > Tinactive, then τ > 50%, so nodes are active
for more than half of each frame. This implies that all nodes’
active periods must overlap, so separate clusters cannot form.
For this reason, we do not consider duty cycles greater than
50%. For duty cycles less than 50%, as the duty cycle increases
towards 50%, the probability of detecting another network
increases rapidly to 100%. Unfortunately the inverse also
holds, indicating that ultra-low duty cycles will lead to ultra-
low detection rates.

Active detection does have a decided advantage over passive
detection. A whole group of nodes may detect the existence of
another cluster at once, by a single message broadcast by one
node of that cluster, provided that that message hits the active
period of the group of nodes. In the case of passive detection,
each node would have to individually detect the presence of
the foreign cluster, by paying the price of keeping the radio
in listening mode during their inactive period.

The disadvantage, however, of active detection is an in-
creased chance of collisions, as the join messages sent from
one cluster may collide with each other, or with application
messages belonging to a different cluster. Both active and
passive detection schemes will be heavily affected by the
density of the network.

GMAC is designed to use active detection, with each node
sending one join message during its inactive period.

B. Decision

Regardless of how detection happens, once a node from
cluster A is aware of another cluster B, it must decide whether
it should merge into B or if it should stay in A. Nodes
cannot merge unconditionally, because otherwise the whole
network may never converge as nodes merge back and forth
between multiple clusters. In order to fully utilize a network,
all nodes must be able to, eventually, communicate with all
other participating nodes. This makes convergence an absolute
requirement, so we should try to minimize the amount of time
and energy spent on it.

The decision algorithm should be a relation � that provides
a total ordering of the set of existing clusters. That is, the
decision relation A � B determines whether cluster A is
superior to cluster B. Thus, when a node in A receives a join
message from a node in B, it should join cluster B if and
only if B � A. The relation � should provide the following
properties:

1) antisymmetric: if A � B and B � A then A = B
2) transitive: if A � B and B � C then A � C
3) total: A � B or B � A

If these properties are provided, then a connected network
will eventually converge as long as nodes eventually detect
all other nodes in their range. This is assured because nodes
will always merge from an inferior cluster into the superior
cluster.

GMAC uses a heuristic mechanism to decide when a node
should join a newly discovered cluster: if the join message
was sent during the first half of the sender’s frame, then it is
accepted as valid, otherwise it is discarded. This is meant to
provide antisymmetry (Property 1), since for any two clusters
only one of them can send a join message in the first half
of its inactive period that the other can receive during its
active period. This relation also provides totality (Property 3),
because the two clusters cannot be desynchronized by more
than half a frame, implying the active period of one overlaps
with the first half of the other’s frame. However, this relation
does not provide transitivity (Property 2). If more than two
clusters exist in each other’s range, there can be ‘cycles’, i.e.,
where nodes can merge from A to B to C and then back to A.
In the best case, one (or more) of the clusters in the cycle can
be eliminated if the others can get all of its nodes to merge.

For example, if clusters B and C could get all of the nodes
in A to join their respective clusters before A can get any
nodes from C to join it, then the cycle would collapse. In
the worst case, these cycles can persist forever, leading to a
network that never converges. A visual example of this effect is
seen in Figure 2. Nodes in cluster B will accept join messages
from cluster C, because the first half of the cluster C’s frame
overlaps with the active period of cluster B. Similarly, nodes
in cluster A will only respond to join messages from cluster
B, and so on. Contrarily, cluster B’s nodes will ignore join
messages from cluster A’s nodes for the same reason. In this
example, the three clusters form a cycle, allowing for a node
to merge from A to B to C, and then back to A, ad infinitum.
We will provide a solution to this problem below.

C. Notification

Once a node has decided that it must merge into a new
cluster, it should notify its own cluster of the merge. Though
not strictly necessary, notification of the decision to merge
one cluster into another can be rapidly propagated through
the already synchronized inferior cluster, saving the need for
repeated detections of the same superior cluster.

GMAC does not use any notification of discovered clusters.
Nodes that decide to join a different cluster just silently merge.
That is, they leave their old cluster by adjusting the length
of their current frame to align their next frame with their
new cluster. In situations with many clusters, this can lead to
isolated nodes as neighbors discover better clusters and leave
them behind.

IV. PROPOSED POLICIES

In our previous work [1], we demonstrated that the cluster
merge behavior of GMAC was sufficient to ensure con-
vergence for small networks, but struggled to consistently
converge larger networks. The main contribution of this work

is a thorough analysis of various methods of merging large
networks composed of multiple desynchronized clusters. In
this section, we discuss some proposed improvements to
GMAC’s current cluster merging mechanism. In the following
section, we will analyze several distinct combinations of these
improvements.

A. Detection

In addition to active detection, provided by default in
GMAC, we also implemented passive detection functionality,
to allow for a comparison of the effectiveness of the two meth-
ods. In our implementation of passive detection a node listens
to the whole inactive portion of its frame with probability pl.

We also implemented a second version of passive detection:
Rather than immediately merging into a newly discovered
cluster, a node can listen to an entire frame first, to try to
discover an even better cluster (see below what makes a cluster
“better”). In very large networks that may have many clusters
before finally converging, it may prove effective to skip joining
“second-best” clusters within range, if there are better ones.
We call this technique listen-before-merge.

B. Decision

Ideally, we would like the cluster with fewer nodes to always
join a cluster with more nodes, to minimize disruption to
the network. However, computing such network metrics in a
decentralized fashion is a difficult problem. Even if our nodes
all knew the exact size of their cluster, we would still need a
method of breaking ties between clusters of equal size. Such
a tie-breaker method can also serve as the primary criteria
for the cluster merge decision. This may lead to sub-optimal
merge operations, forcing many nodes to resynchronize to
match a few. Convergence is more important than optimality,
particularly because in a stable network, merge operations can
be assumed to be infrequent.

We propose to solve the convergence problem using cluster
IDs. A cluster id is simply an identifier used by all nodes
that share a common active period, to identify their particular
cluster. We assume that all nodes have a unique identifier,
and nodes initially use their own identifier as the id for their
singleton cluster. If a node hears a better cluster id during
its active period, it should discard its old id and adopt the
newly discovered one. When a node detects a different cluster
(either by hearing a join message during its active period, or
by overhearing an application message while listening to its
inactive period), it can simply compare its own cluster’s id to
that of the other cluster. If its id is higher, it is already in the
superior cluster and will ignore the message. However, if the
other cluster’s id is higher, the node can decide that it should
merge its inferior cluster into the other and react accordingly.
By assuring that the nodes in a cluster with a higher id never
merge into a cluster with a lower id, we can eliminate the
cycling problem in GMAC’s decision mechanism. Eventually
all other clusters will merge into the cluster with the best id.

C. Notification

We have added a merge field to the header of application
messages. This allows a node to notify its neighbors when
it detects a superior cluster. After discovering a cluster with
a better id, a node can record the time difference, or offset,
between its own cluster and the superior one. Then, rather
than immediately merging into the new cluster, it can stay
synchronized to its current cluster for one more frame, in order
to communicate to its old neighbors one more time and inform
them about the new cluster. By sending this merge offset along
with its message in the following frame, its current neighbors
can be made aware of both the existence and the offset of this
superior cluster without the need to detect it on their own. This
notification should greatly reduce the time and energy spent
on detection, particularly at low duty cycles which reduce the
probability of detecting other clusters.

V. EXPERIMENTAL SETUP

We conduct our simulations using the MiXiM extensions to
the OMNET++ simulation environment. For more detail about
our simulator, GMAC, and the MyriaNed nodes we simulate,
please see [1].

A. Clocks

We designed our own OMNET++ modules to represent the
clocks found in our sensor nodes. OMNET keeps track of
the global simulation time, Tsim, while an individual node x
computes its own local time, Tx. A node bases this on its
own clock’s frequency multiplier (Fx) and phase offset (Px),
provided as OMNET simulation parameters. Thus, x can com-
pute Tx = (Tsim×Fx)+Px. A node’s phase offset determines
the length of time between the global start of the simulation
and the start of that particular node. The frequency multiplier
determines how much faster or slower than simulation time a
node’s clock runs. Unless otherwise specified, all clocks use
a random frequency multiplier 0.99998 < Fx < 1.00002, i.e.,
±20 parts per million.

B. GMAC Configurations

In order to facilitate discussion of GMAC’s behavior with
various improvements switched on or off, we will analyze
several specific combinations, called configurations.

• <Active> This is the default GMAC behavior, as de-
scribed in Section III.

• <Active+Ids> The same as <Active>, but using cluster
ids in order to make consistent merge decisions.

• <Passive+Ids> Purely passive detection with pl = 0.4%,
using cluster ids. We explain our choice for the value
0.4% below.

• <Active+Ids+MergeMsgs> The same as
<Active+Ids>, but nodes do not immediately join
newly discovered clusters, rather they wait one frame in
order to send merge messages.

• <Active+Ids+Listen> The same as <Active+Ids>, but
nodes do not immediately join newly discovered clusters,
rather they listen for a whole frame in order to discover

TABLE I: Networks Investigated

Nodes Dimensions Spacing

64 640m× 640m

80m Matrix
256 1280m× 1280m

1024 2560m× 2560m

4096 5120m× 5120m

(a) 10mW (b) 20mW (c) 40mW (d) 80mW

Fig. 3: Graphical representation of the four simulated transmit
ranges

the best cluster in range (which we also refer to as listen-
before-merge).

• <Active+Ids+MergeMsgs+Listen> This configuration
uses active detection, cluster ids, and uses both listen-
before-merge and merge messages.

GMAC uses 8 active slots, and with a default half-second
frame length, a full frame has 584 slots. In terms of slots,
T = 584, Tactive = 8 and Tinactive = 576. This gives GMAC
a duty cycle of τ = Tactive

T = 8
584 = 1.37%, and an active

detection probability of pd = Tactive

Tinactive
= 8

576 = 1.39%.
In order to compare active and passive detection, we would

like to spend approximately the same amount of energy in both
cases. Sending a join message costs an amount of energy equal
to the sum of the energy required to turn on the node’s radio,
broadcast a message, and turn off the node’s radio again. On
our hardware, this costs about the same as two active receive
slots, so we would like to listen to two slots per frame. With
the default 584 slots per frame, a node should be listening
to a whole frame every 200-300 frames on average. For this
reason we use a default pl =

1
250 = 0.4%, meaning a node

will randomly listen to an entire frame once every 250 rounds.

C. Topology

To better assess the strengths and weaknesses of the various
configurations, we investigate the effect of topology on cluster
merging. In particular, we look at network size and node
density. In all of our experiments the nodes are deployed
in a regular matrix pattern. N2 nodes are deployed in an
N × N grid, with rows (and columns) placed 80m apart
(see Table I). It is important that the networks we examine
are connected, because otherwise complete synchronization
would be impossible. Though not the most representative of
real-world deployments, matrix topologies allow us to directly
observe the effects of node density with a regular topology.

We set the transmit power for all nodes in the network on a
per-run basis in order to vary the density of a given topology.
By increasing a simulated node’s transmit power, the simulator
increases the node’s transmit range. This effectively decreases
the diameter of the network and increases its density. We have

chosen the transmit power values based on our grid spacing
of 80 meters, and unless otherwise specified, use 20mW as
our default setting. In Fig. 3 we show a group of nodes spaced
80m apart, depicting the four transmit power level ranges from
the perspective of the sender (black) and the potential receivers
(gray). This parameter strongly influences the connectedness
of a given topology.

D. Measurements

Each simulated node x logs the global simulation time Tx,i

at the beginning of each new round i. Using this data, we
can see not only which nodes are synchronized to which (i.e.,
whether their active periods overlap), but how tightly they are
synchronized (i.e., how much their active periods overlap).

We know that nodes who are desynchronized by more than
the duration of one active period cannot communicate. We
consider groups of nodes whose reported start times for round
i differ by less than some ε to be part of a synchronized cluster.
We look at the reported times in increasing order and count
the clusters. In our measurements we consider a cluster to be a
group of nodes for which, if sorted by the active period starting
times, consecutive nodes have a relative offset of at most 2ms
(about 65 ticks, or just over 2 slots). For each cluster, we
compute its size (1...|Nodes|).

In order to evaluate how tightly synchronized the nodes
are, we compute the standard deviation of reported start times
for round i across all nodes. By looking at how the standard
deviation changes as the simulated run progresses, we can
see whether the synchronization mechanism is able to reach
and/or maintain tight temporal-coupling of the nodes. Given
that we are simulating 32 kHz clocks, one timer tick is
approximately 30 µs and one slot is approximately 850 µs
(28 ticks). Therefore, we can consider an entire network to be
synchronized when the standard deviation of start times drops
below 1000 µs, or 1 ms.

E. Scenarios

We utilize different scenarios in order to evaluate different
aspects of the merge behavior.

1) Asynchronous Start: All nodes start up at a random time
1s ≤ tstart ≤ 15s in the CATCHING state. In this state,
nodes know they are unsynchronized and search for a cluster
to join. Initially they will continuously listen for a message
for a random initial period tcatch, lasting between one and two
frames. If they do not catch a cluster (by hearing a message)
before the end of this extended frame, they then broadcast a
single HELLO message. After sending their message, they
switch back to continuous listening mode and remain in that
mode. When a CATCHING node hears a message, it will enter
the CAUGHT state, and try to synchronize its next frame
with the node (and cluster) that it heard. Here, nodes that
use the listen-before-merge option will continue listening until
the end of their frame, rather than going to sleep. Once the
node has performed its frame-length adjustment, it will enter
the NORMAL state, and will assume that it is synchronized.
When in a normal, synchronized state, nodes will execute the

GMAC duty cycle of eight active TDMA slots followed by a
long inactive period, dependent upon the length of the frame.
Note that nodes that use cluster ids will ignore them while
CATCHING, because otherwise a node with a high id may
stay isolated and silent, ignoring all its neighbors that happen
to have lower ids. Once a single node has found an initial
cluster and synchronized with it, it will respect the ordering
of cluster ids from then on.

2) Singleton: We simulate two different variations of this
scenario: a singleton cluster with an inferior id detecting and
merging into the established superior cluster, and an existing
cluster detecting and merging into a singleton cluster with
a superior id. We call these scenarios SingletonWorst and
SingletonBest, respectively.

This is by far the simplest set of scenarios that we investi-
gate. That is particularly so in the SingletonWorst case, where
the desynchronized node has an inferior cluster id. In this
case, the network will converge after that single node detects
the other cluster, and merges into it. In the best case, the
single desynchronized node has a superior id, and must get all
other nodes to merge into its cluster. In both variations of this
scenario, the isolated node is located in the top-left corner of
the grid. We have chosen this location because it maximizes
the distance (hops) that the synchronization information must
travel to reach all nodes in the network.

3) Cluster Merge: This scenario is designed to give us
insight into the behavior of cluster merging in the case of
multiple synchronized clusters. Here we only look at the
32×32 (1024-node) topology. The sixteen columns of nodes
on the right-hand side of the grid begin as one synchronized
cluster, and the fourteen columns of nodes on the left-hand side
begin as another. For the first five seconds of the simulation,
the rightmost two columns of the left-half of the grid are
inactive. At Tsim = 5s, these 64 nodes start up as a third
synchronized cluster. The left cluster has id 1, the middle
cluster has id 2, and the right cluster has id 3. This final
scenario is more complex than the singleton one, but more
straight-forward than the asynchronous start.

VI. EVALUATION

We look at three different scenarios in order to evaluate the
three different aspects of merge behavior. First, to examine
the decision aspect of merging, we use AsynchronousStart. In
the Singleton scenarios, we explore the detection aspect of
cluster merging. Finally, using the ClusterMerge scenario, we
look more generally at two established clusters merging. For
this scenario, we can investigate how the size, topology and
distribution of the clusters affects the merge behavior, as well
as examine the effects of our notification improvements.

A. Decision

We begin with the AsynchronousStart scenario for two rea-
sons. First, this is the scenario that initially pointed at failings
in GMAC’s synchronization mechanisms, so it makes sense
to reproduce those results here. Second, by demonstrating
the performance of all our test configurations in the most

0 1000 2000 3000 4000 5000 6000 7000
Round Number

0%

0.001%

0.010%

0.100%

1%

10%

100%

%
 o

f
N

o
d
e
s

O
U

T
S
ID

E
 L

a
rg

e
st

 C
lu

st
e
r

Topology (# Nodes)

64
256
1024

(a) Performance of <Active> for increasing network sizes

0 1000 2000 3000 4000 5000 6000 7000
Round Number

10

100

1000

1e4

1e5

1e6

1e7

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
S
ta

rt
 T

im
e
s

(�

s)

(b) Per-round standard deviation of start times for 32 runs of <Active>, 1024-node
grid

Fig. 4: Cluster merging using the <Active> configuration

demanding circumstances, we can focus our analysis on the
best few.

In Figure 4 we see the performance of the <Active>
GMAC configuration. Figure 4a shows a plot of the standard
deviation of start times as a function of the round number,
averaged across 32 runs. We see that GMAC’s <Active>
configuration works acceptably in the small 64-node topology,
converging all nodes to a single cluster in an average of
about 1000 rounds (about 8 minutes). However, it does not
consistently synchronize the 256-node and 1024-node test
cases. In the 256-node networks, the majority of all nodes
synchronize to the best cluster, but not all runs synchronize.
In Figure 4b, we see a composite plot showing that only six
of the thirty-two 1024-node runs converged to a completely
synchronized network, and in those cases it often took almost
a full simulated hour.

To examine the cause of the <Active> configuration’s
difficulties, we look at the results of some individual runs that
clearly show the problem. The three graphs on the left side
of Figure 5 show the difference in µs between each node’s
start time and the average start time for the round on the x-
axis. Those on the right show the percentage of nodes outside
the largest cluster, calculated as described in Section V-D.
Figure 5a shows a 256-node run that properly converges to
a single cluster around round 2500. The individual clusters
can be seen previous to that point as clusters of points,
converging to bounds of about ±100µs. Figure 5b is another
view of the same data, showing the nodes outside the largest
cluster dropping to zero. The results of 1024-node runs show
similar initial behavior, but generally fail to converge. For an
example of a non-converging run, see Figures 5c and 5d. These
results demonstrate the problem of cyclic ordering of clusters
described in Section III-B. The <Active> merge protocol can
only consistently synchronize two clusters. If there are more
than two clusters a cycle may exist, preventing convergence

for an arbitrarily long time. The severity of the problem
is dependent on the size of the network, and will make it
unsuitable for very large networks.

In order to solve this decision problem, we have proposed
using cluster ids, described in Section IV-B. In Figures 5e and
5f, we show the performance of the <Active+Ids> configu-
ration for a representative 1024-node run. The general merge
mechanism is the same as <Active>, but nodes use the cluster
ids to reliably decide whether to join a discovered cluster,
rather than arbitrary timing heuristics. When compared to the
results for the <Active> configuration, the ids clearly provide
for superior performance. In Figure 6a we show the average
performance of the <Active+Ids> configuration, and we can
see that it is able to consistently synchronize a 1024-node
network in a little over 1000 rounds. This is the same number
of rounds it takes the <Active> configuration to synchronize
a 64-node network. Based on these findings we can eliminate
the <Active> configuration from further study, and all of the
following results utilize cluster IDs.

B. Detection

GMAC currently uses an active detection mechanism, as
described earlier. Here we will examine the performance of
the new passive detection configurations we have designed,
i.e. <Passive+Ids>, in order to see whether they are superior
to the existing active mechanism. We begin with more results
from the AsynchronousStart scenario, then proceed to evaluate
the SingletonBest and SingletonWorst scenarios.

In Figure 6c we show the average behavior of
<Passive+Ids> over 32 simulated runs. The performance
is clearly superior to that of <Active> (Fig. 4a) on larger
topologies, though it does take longer to converge for small
networks, as seen from the 64-node topology results. At larger
network sizes, the consistent ordering of clusters turns out
to be an essential element that overcomes passive detection’s

(a) A 256-node run, showing proper synchronization (b) The simulated run as Fig. 5a, showing the size of the largest cluster

(c) Example 1024-node simulation that fails to reach complete synchrony (d) Cluster size in the same 1024-node run as Fig. 5c

(e) A 1024-node <Active+Ids> run demonstrating correct synchronization (f) Cluster size in the same 1024-node run as Fig. 5e

Fig. 5: The problem with <Active>’s merge mechanism and a proposed solution, <Active+Ids>

0 1000 2000 3000 4000 5000 6000 7000
Round Number

1

10

100

1000

1e4

1e5

1e6

1e7

1e8

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
S
ta

rt
 T

im
e
s

(�

s)

Topology (# Nodes)

64
256
1024

(a) <Active+Ids>

0 1000 2000 3000 4000 5000 6000 7000
Round Number

1

10

100

1000

1e4

1e5

1e6

1e7

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
S
ta

rt
 T

im
e
s

(�

s)

Topology (# Nodes)

64
256
1024

(b) <Active+Ids+Listen>

0 1000 2000 3000 4000 5000 6000 7000
Round Number

1

10

100

1000

1e4

1e5

1e6

1e7

1e8

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
S
ta

rt
 T

im
e
s

(�

s)

Topology (# Nodes)

64
256
1024

(c) <Passive+Ids>

Fig. 6: Comparison of configurations using cluster IDs

inherent performance disadvantage. However, when compared
to the <Active+Ids> configuration (Fig. 6a), there is really
no competition. Active detection is several times faster than
passive detection, because of active detection’s ability to
recruit multiple inferior nodes with a single broadcast.

We evaluate our other proposed improvement to detection,
listen-before-merge, using the same chaotic start scenario in
Figure 6b. Though hard to see in the graphs, the listen-before-
merge behavior does give a performance improvement on the
largest test-case, but it is quite minimal. This scenario should
be the one in which this behavior provides the most benefit,
as there may be many different clusters in a node’s transmit
range. However, this additional listening can only help if there
are more than one superior cluster in range, and even then,
it will only help if the node detects a second-best cluster to
begin with.

We continue our evaluation by looking at our singleton
cluster scenarios. In Figure 7 we can compare the performance
of <Passive+Ids>, labeled ‘P+I’, to that of two of our ac-
tive configurations: <Active+Ids> and <Active+Ids+Listen>
(labeled ‘A+I’ and ‘A+I+L’, respectively). We simulate these
configurations using both versions of the singleton merge
scenario and a 1024-node topology. Each graph shows the
percentage of nodes that are not synchronized to the largest
cluster as a function of the simulated round. First, in Figure 7a,
we examine <SingletonWorst>, where the single node has an
inferior cluster id and should therefore join the other cluster
(containing all other nodes). All active detection configura-
tions handle this simple scenario identically, and manage to
synchronize the isolated node in an average of 100 rounds.
Passive detection, on the other hand, requires nearly five times
as long to synchronize.

Finally, we look at the <SingletonBest> scenario. In this
scenario, the isolated node has a superior cluster id, so all
other nodes must leave their cluster and join the singleton
cluster. In Figure 7b, we see that all the configurations
using active detection eventually synchronize the network, but
passive detection again performs poorly and consistently fails
to synchronize the network. Unsurprisingly, the listen-before-
merge optimization has not helped in this scenario, as there are
no other clusters for it to detect. In fact, it performs slightly
worse than the simple <Active+Ids> configuration. It seems
that the additional listening causes delays in synchronization as
nodes listen for better clusters that do not exist. Additionally,
the listen-before-merge behavior costs a significant amount of
energy. Using a duty cycle of 1%, a full frame of listening
costs about the same energy as 100 ‘normal’ frames. Given
the high cost and low success rate of listen-before-merge,
we can discontinue investigating the <Active+Ids+Listen>
configuration.

C. Notification

In this part, we delve into our final performance enhance-
ment: notification. When one node detects another cluster and
decides to join it, notifying his already synchronized neighbors
can save a lot of energy. Each neighbor alerted by a merge

0 500 1000 1500 2000
Round Number

0%

0.001%

0.010%

0.100%

1%

10%

100%

%
 o

f
N

o
d
e
s

O
U

T
S
ID

E
 L

a
rg

e
st

 C
lu

st
e
r

Configuration

A+T
A+T+ML
A+T+L
A+T+M
P+T

(a) SingletonWorst

0 500 1000 1500 2000
Round Number

0%

0.001%

0.010%

0.100%

1%

10%

100%

%
 o

f
N

o
d
e
s

O
U

T
S
ID

E
 L

a
rg

e
st

 C
lu

st
e
r

Configuration

A+T
A+T+ML
A+T+L
A+T+M
P+T

(b) SingletonBest

Fig. 7: Passive detection compared to Active detection using our two Singleton scenarios

0 200 400 600 800 1000 1200
Round Number

0%

0.001%

0.010%

0.100%

1%

10%

100%

%
 o

f
N

o
d
e
s

O
U

T
S
ID

E
 L

a
rg

e
st

 C
lu

st
e
r

Configuration

A+T
A+T+ML
A+T+M

Fig. 8: Merging three separate clusters in the ClusterMerge
scenario

message can be spared many rounds of operating in a dying
subset, with few or no neighbors.

We begin by referring again to Figure 7b. The
reduction in the time required to reach complete
synchrony for the <Active+Ids+MergeMessages> and
<Active+Ids+MergeMsgs+Listen>, labeled ‘A+I+M’ and
‘A+I+ML’, is clearly significant. These two configurations
perform almost identically and can synchronize all nodes in
the simulated 32 × 32 grid almost five times faster than the
configurations without merge messages. The best part about
the merge messages is that they are essentially free. The only
cost is the overhead of a two-byte merge offset with each
application message.

In order to further evaluate the performance of the merge
message optimization, we turn to our final scenario, Cluster-
Merge. In this scenario we simulate the merging of three sepa-

rate clusters in a 1024-node grid. Figure 8 shows the results of
our three remaining configurations. The basic <Active+Ids>
configuration performs quite well, taking only 500 rounds
on average to converge to a single cluster. However, the
configurations with merge messages perform even better and
reach synchrony in less than 100 rounds.

We evaluate the effects of density and duty-cycle on syn-
chronization, by returning again to our original scenario of
an asynchronous network start. In Fig. 9a we examine the
role of density on cluster merging by simulating each of
the four transmit power settings described in Sec. V-C. The
density of the network is determined by the nodes’ transmit
power, so we can directly investigate the effects of network
density on synchronization. Here we evaluate only the two
most promising configurations: <Active+Ids+MergeMsgs>
and <Active+Ids+MergeMsgs+Listen>. The question we
would like to answer is: does listen-before-merge offer any sig-
nificant benefit in this scenario? The potentially large number
of clusters present in the asynchronous start-up scenario pro-
vides the best opportunity for this modification to demonstrate
its value. Unfortunately, at least in the case of varying network
density, there is no clear advantage to performing a long listen
before merging. Both configurations perform quite similarly,
and as mentioned previously, the cost of performing these
listening periods is prohibitively high without strong evidence
of better performance. From the results of these simulations,
it seems that network density has only a minor effect on the
performance of the synchronization mechanism.

The results of our set of experiments extending GMAC’s
frame time are shown in Figure 9b, and show how the nodes’
duty-cycle affects synchronization. Our default frame time to
this point has been 1

2s, giving a duty cycle of about 1.5%.
We now simulate longer frame times with the same 8 slot
active period yielding progressively lower duty cycles, with
the lowest being about 0.15% at a frame length of 5s. Low-

0 500 1000 1500 2000 2500 3000 3500
Round Number

10

100

1000

1e4

1e5

1e6

1e7

1e8

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
S
ta

rt
 T

im
e
s

(�

s)

TxPower, Configuration

10, A+T+ML
20, A+T+ML
40, A+T+ML
80, A+T+ML
10, A+T+M
20, A+T+M
40, A+T+M
80, A+T+M

(a) Experiments using 4 different transmit power settings, higher is more dense

0 500 1000 1500 2000 2500 3000 3500
Round Number

1

10

100

1000

1e4

1e5

1e6

1e7

1e8

1e9

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
S
ta

rt
 T

im
e
s

(�

s)

Configuration, FrameTime

A+T+ML, 0.5
A+T+ML, 1.0
A+T+ML, 2.0
A+T+ML, 5.0
A+T+M, 0.5
A+T+M, 1.0
A+T+M, 2.0
A+T+M, 5.0

(b) Experiments using 4 different frame length settings, higher is lower duty-cycle

Fig. 9: The effects of density and frame length on AsynchronousStart

ering the duty cycle reduces the probability of detection, as
discussed earlier, and that effect is clearly visible in our results.
As the total frame time increases, the effects of clock drift are
magnified as well, since nodes have less frequent opportunities
to synchronize their clock with those of their neighbors. This
behavior is clearly evident in our results, particularly at the
highest frame length setting of 5s. Using such a low duty cycle
drastically lowers the probability of detecting other clusters,
though GMAC copes with this with frame lengths up to 2s.
Furthermore, we again find no evidence that the listen-before-
merge optimization is providing any noticeable performance
benefit on top of that provided by the merge messages alone.

0 500 1000 1500 2000 2500 3000 3500
Round Number

1

10

100

1000

1e4

1e5

1e6

1e7

1e8

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
S
ta

rt
 T

im
e
s

(�

s)

Configuration

A+T
A+T+ML
A+T+M

Fig. 10: Our largest topology, a 64×64 grid of 4096 nodes

Finally, we have one last set of simulations using an even
larger topology to test the scalability of our best configuration,
<Active+Ids+MergeMsgs>, as well as <Active+Ids> and
<Active+Ids+MergeMsgs+Listen>. As shown in Figure 10,
all these configurations can adequately handle the simulated

64×64 node grid. The performance advantage granted by the
merge messages is again evident. Both configurations that
include merge messages synchronize the entire network in an
average of about 250 rounds, while the configuration without
these messages takes approximately 2000.

VII. CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is a thorough evaluation
of several proposed methods of merging separately synchro-
nized clusters. The results of our simulations show that the
problem is solvable, and our solution can be used to achieve
remarkably low duty-cycles, even with relatively inaccurate
clocks. Our simulations have shown that GMAC is capable
of synchronizing all nodes in a network so that they share a
common active period, and doing so in a decentralized manner.
Furthermore, simulations indicate that duty-cycles as low as
7ms
2s = 0.35% are possible using these mechanisms.

All configurations using cluster IDs eventually synchronize
the entire network, with the only difference being the time each
configuration takes to do so. We demonstrated that while pas-
sive detection does consistently converge the network, it can
take far longer than using active detection. Additionally, we
demonstrated that the combination of active and passive detec-
tion can offer small performance benefit, but will generally not
outweigh the additional energy cost. We have further shown
that a simple notification message can drastically reduce the
time for a network to reach a synchronized state, by as much as
a factor of eight on our 4096-node topology. These two small
modifications to GMAC’s current behavior radically increase
its suitability for large scale networks. The key insight is that
as clusters build up, merge messages allow GMAC to leverage
the inferior cluster’s existing synchronization to rapidly merge
whole clusters, not just individual nodes. Combined with a
total ordering of clusters to solve the problem of which cluster
to join, large and complicated networks can be synchronized
in just a few minutes.

Our next step will be to verify the performance of these
modifications by implementing them to run on our existing
hardware. Additionally, we will investigate the effects of
mobility on network synchronization. Mobility is always an
issue in sensor networks, because the network topology is
constantly changing. Even if not due to nodes actually moving,
changing environmental conditions and failing nodes affect the
network’s topology in much the same way. Understanding the
effect of mobility is therefore essential in order to evaluate
this line of research. There are also many ways in which
the methods described in this paper could still be improved.
For example, nodes could be more adaptable to changing
network conditions. Rather than sending a join message every
round, nodes could keep track of the last time they heard
a join message, in order to change the frequency of their
join broadcasts. If a node in cluster A has not heard from
any other cluster in a long time, it is likely that there are
no unsynchronized nodes in its neighborhood and the active
detection frequency could be reduced. As is often the case in
sensor networks, there is a constant pressure to conserve as
much energy as possible to prolong node lifetimes.

REFERENCES

[1] M. Dobson, S. Voulgaris, and M. van Steen, “Network-level Synchro-
nization in Decentralized Social Ad-Hoc Networks,” in ICPCA 2010,
2010.

[2] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol
for wireless sensor networks,” in IEEE INFOCOM 2002. Twenty-First
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings, 2002, pp. 1567–1576.

[3] T. Van Dam and K. Langendoen, “An adaptive energy-efficient MAC
protocol for wireless sensor networks,” in Proceedings of the 1st inter-
national conference on Embedded networked sensor systems. ACM,
2003, pp. 171–180.

[4] W. Ye, F. Silva, and J. Heidemann, “Ultra-low duty cycle MAC with
scheduled channel polling,” in Proceedings of the 4th international
conference on Embedded networked sensor systems. ACM, 2006, p.
334.

[5] M. Liu, T. Lai, and M. Liu, “Is Clock Synchronization Essential for
Power Management in IEEE 802.11-Based Mobile Ad Hoc Networks?”

[6] S. Mank, R. Karnapke, and J. Nolte, “An Adaptive TDMA based MAC
Protocol for Mobile Wireless Sensor Networks,” in Proceedings of the
2007 International Conference on Sensor Technologies and Applications.
IEEE Computer Society, 2007, pp. 62–69.

[7] ——, “Mlmac-an adaptive tdma mac protocol for mobile wireless sensor
networks,” in Ad-Hoc & Sensor Wireless Networks: An International
Journal, Special Issue on 1st International Conference on Sensor
Technologies and Applications, 2008.

[8] I. Cidon and M. Sidi, “Distributed assignment algorithms for multi-hop
packet-radionetworks,” in IEEE INFOCOM’88. Networks: Evolution or
Revolution, Proceedings. Seventh Annual Joint Conference of the IEEE
Computer and Communcations Societies, 1988, pp. 1110–1118.

[9] M. Arumugam and S. Kulkarni, “Self-stabilizing deterministic TDMA
for sensor networks,” Distributed Computing and Internet Technology,
pp. 69–81, 2005.

[10] S. Kulkarni and M. Arumugam, “SS-TDMA: A self-stabilizing MAC
for sensor networks,” Sensor Network Operations, 2006.

[11] R. Tjoa, K. Chee, P. Sivaprasad, S. Rao, and J. Lim, “Clock drift
reduction for relative time slot TDMA-based sensor networks,” in 15th
IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications, 2004. PIMRC 2004, vol. 2, 2004.

[12] R. Pussente and V. Barbosa, “An algorithm for clock synchronization
with the gradient property in sensor networks,” Journal of Parallel and
Distributed Computing, vol. 69, no. 3, pp. 261–265, 2009.

	Introduction
	Related work
	Decentralized cluster merging
	Detection
	Decision
	Notification

	Proposed Policies
	Detection
	Decision
	Notification

	Experimental setup
	Clocks
	GMAC Configurations
	Topology
	Measurements
	Scenarios
	Asynchronous Start
	Singleton
	Cluster Merge

	Evaluation
	Decision
	Detection
	Notification

	Conclusions and Future Work
	References

